SnS academy

a fingerprint school
Sincerity, Nobility and Service

Class: XII THREE DIMENSIONAL GEOMETRY

1. Find the equation of the plane passing through the points $(-1,2,0)$, $(2,2,-1)$ and parallel to the line $\frac{x-1}{1}=\frac{2 y+1}{2}=\frac{z+1}{-1}$.
2. Find the equation of a plane passes through the point $(3,2,0)$ and contains the line $\frac{x-3}{1}=\frac{y-6}{5}=\frac{z-4}{4}$.
3. If lines $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}$ intersect, then find the value of k and hence find the equation of the plane containing these lines.
4. Find the distance of the point $P(3,4,4)$ from the point, where the line joining the points $A(3,-4,-5)$ and $B(2,-3,1)$ intersects the plane $2 x+y+z=7$.
5. Find the distance of the point $(1,-2,3)$ from the plane $x-y+z=5$ measured parallel to the line whose direction cosines are proportional to $2,3,-6$.
6. Write the vector equation of the plane passing through the point (a,b,c) and parallel to the plane $\vec{r} \cdot(\vec{i}+\vec{j}+k)=2$.
7. If the Cartesian equation of the line is $\frac{3-x}{5}=\frac{y+4}{7}=\frac{6 z-4}{4}$, write the vector equation for the line.
8. Find a vector \vec{a} of magnitude $5 \sqrt{2}$, making an angle of $\frac{\pi}{4}$ with x-axis, $\frac{\pi}{2}$ with y -axis and acute angle θ with z -axis.
9. Find the angle between the lines $\vec{r}=2 i-5 j+k+\lambda(3 i+2 j+6 k)$ and $\vec{r}=7 i-6 k+\mu(i+2 j+2 k)$.
10. Show that the lines $\frac{x+1}{3}=\frac{y+3}{5}=\frac{z+5}{7}$ and $\frac{x-2}{1}=\frac{y-4}{3}=\frac{z-6}{5}$ intersect. Also find their point of intersection.
11. A line passes through $(2,-1,3)$ and is perpendicular to the lines $\vec{r}=(i+j-k)+\lambda(2 i-2 j+k)$ and $\vec{r}=(2 i-j-3 k)+\mu(i+2 j+2 k)$.
12. Find the value of p, so that the lines $l_{1}: \frac{1-x}{3}=\frac{7 y+14}{p}=\frac{z-3}{2}$ and $l_{2}: \frac{7-7 x}{3 p}=\frac{y-5}{1}=\frac{6-z}{5}$ and perpendicular to each other. Also find the equations of a line passing through a point ($3,2,-4$) and parallel to line l_{1}.
13. Find the vector and Cartesian equations of the line passing through the point $(2,1,3)$ and perpendicular to the lines $\frac{1-x}{-3}=\frac{y-2}{2}=\frac{z-3}{3}$ and $\frac{x}{-3}=\frac{y}{2}=\frac{z}{5}$.
14. Find the shortest distance between the lines whose vector equations are $\vec{r}=(i+j)+\lambda(2 i-j+k)$ and $\vec{r}=(2 i+j-k)+\mu(3 i-5 j+2 k)$.
15. Find the equation of the plane that contains the point $(1,-1,2)$ and is perpendicular to both the planes $2 x+3 y-2 z=5$ and $x+2 y-3 z=8$. Hence, find the distance of point $P(-2,5,5)$ from the plane obtained above.
16. Find the distance of the point $P(-1,-5,-10)$ from the point of intersection of the line joining the points $A(2,-1,2)$ and $B(5,3,4)$ with the plane $x-y+z=5$.
17. Find the distance between the point $(7,2,4)$ and the plane determined by the points $A(2,5,-3), B(-2,-3,5)$ and $C(5,3,-3)$.
18. Find the distance between the lines: $\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}$;

$$
\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}
$$

19. Find the distance of the point $(-1,-5,-10)$ from the point of intersection of the line $\vec{r}=(2 i-j+2 k)+\lambda(3 i+4 j+2 k)$ and the plane $\vec{r} .(i+j+k)=5$.
20. Show that the lines $\frac{5-x}{-4}=\frac{y-7}{4}=\frac{z+3}{-5}$ and $\frac{x-8}{7}=\frac{2 y-8}{2}=\frac{z-5}{3}$ are coplanar.
21. Show that the lines $\vec{r}=(i+j-k)+\lambda(3 i-j)$ and $\vec{r}=(4 i-k)+\mu(2 i+3 k)$ intersect. Also find their point of intersection.
22. Find the equation of the plane through the line of intersection of the planes $x+y+z=1$ and $2 x+3 y+4 z=5$ which is perpendicular to the plane $x-y+z=0$. Also find the distance of the plane obtained above from the origin.
23. Find the distance of the point $(2,12,5)$ from the point of intersection of the line $\vec{r}=(2 i-4 j+2 k)+\lambda(3 i+4 j+2 k)$ and the plane $\vec{r} \cdot(i-2 j+k)=0$
24. Find the distance between the lines l_{1} and l_{2} given by

$$
\begin{aligned}
& l_{1}: \vec{r}=(i+2 j-4 k)+\lambda(2 i+3 j+6 k) \\
& l_{2}: \vec{r}=(3 i+3 j-5 k)+\mu(4 i+6 j+12 k) .
\end{aligned}
$$

25. If a unit vector \vec{a} makes angles $\frac{\pi}{3}$ with $\dot{i}, \frac{\pi}{4}$ with \vec{j} and an acute angle θ with \vec{k}, then find the value of θ.
26. Find the length of the perpendicular drawn from the origin to the plane $2 x-3 y+6 z+21=0$.
27. Write the Cartesian equation of a plane, bisecting the line segment joining the points $A(2,3,5)$ and $B(4,5,7)$ at right angles.
28. Find the coordinates of the point, where the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{2}$ intersects the plane $x-y+z=5$. Also find the angle between the line and the plane.
29. Find the vector equation of the plane which contains the line of intersection of the planes $\vec{r} .(i+2 j+3 k)-4=0$ and $\vec{r} \cdot(2 i+j-k)+5=0$ and which is perpendicular to the plane $\vec{r} \cdot(5 i+3 j-6 k)+8=0$.
30. Show that the lines $\vec{r}=(3 i+2 j-4 k)+\lambda(i+2 j+2 k)$; $\vec{r}=(5 i-2 j)+\mu(3 i+2 j+6 k)$ are intersecting. Hence find their point of intersection.
31. Find the vector equation of the plane through the points $(2,1,-1)$ and $(-1,3,4)$ and perpendicular to the plane $x-2 y+4 z=10$.
32. Find the vector equation of the plane passing through three points with position vectors $i+j-2 k ; 2 i-j+k$ and $i+2 j+k$. Also find the coordinates of the point of intersection of this plane and the line $\vec{r}=(3 i-j-k)+\lambda(2 i-2 j+k)$.
33. Find the vector equation of the plane determined by the points $A(3,-1,2), B(5,2,4)$ and $C(-1,-1,6)$. Also find the distance of point $P(6,5,9)$ from this plane.
34. Find the coordinates of the point where the line through $(3,-4,-5)$ and $(2,-3,1)$ crosses the plane, passing through the points $(2,2,1)$ and $(3,0,1)$ and $(4,-1,0)$.
35. Find the equation of the plane passing through the line of intersection of the planes $\vec{r} .(i+3 j)-6=0$ and $\vec{r} .(3 i-j-4 k)=0$, whose perpendicular distance from origin is unity.
36. Find the vector equation of the line passing through the point $(1,2,3)$ and parallel to the planes $\vec{r} \cdot(i-j+2 k)=5$ and $\vec{r} \cdot(3 i+j+k)=6$
37. Find the image of the point having position vector $i+3 j+4 k$ in the plane $\vec{r} .(2 i-j+k)+3=0$.
38. Find the equation of the plane which is at a distance of $3 \sqrt{3}$ units from origin and the normal to which is equally inclined to the coordinate axes.
39. If a line has direction ratios $2,-1,-2$, then what are its direction cosines?
40. Find the distance of the plane $3 x-4 y+12 z=3$ from the origin.
41. Find the vector and Cartesian equation of the line passing through the point ($1,2,-4$) and perpendicular to the two lines $\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7}$ and $\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$.
42. Find the equation of a line passing through the point $\mathrm{P}(2,-1,3)$ and perpendicular to the lines $\vec{r}=(i+j-k)+\lambda(2 i-2 j+k)$ and $\vec{r}=(2 i-j-3 k)+\mu(i+2 j+2 k)$.
43. Find the equation of the line passing through the point $(-1,3,-2)$ and perpendicular to the lines $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ and $\frac{x+2}{-3}=\frac{y-1}{2}=\frac{z+1}{5}$.
44. Find the coordinates of the point where the line through the points $A(3,4,1)$ and $B(5,1,6)$ crosses the $X Y$-plane.
45. Find the coordinates of the point where the line through the points $(3,-4,-5)$ and $(2,-3,1)$ crosses the plane $2 x+y+z=7$.
46. Find the coordinates of the point where the line through the points $(3,-4,-5)$ and $(2,-3,1)$ crosses the plane $3 x+2 y+z+14=0$.
47. Find the vector and Cartesian equation of the line passes through the point $(1,2,3)$ and parallel to the planes $\vec{r} .(i-j+2 k)=5$ and $\vec{r} .(3 i+j+k)=6$.
48. Find the equation of the plane determined by the points $A(3,-1,2)$, $B(5,2,4)$ and $C(-1,-1,6)$ and hence find the distance between the plane and the point $P(6,5,9)$.
49. Find the length and the foot of the perpendicular from the point $P(7,14,5)$ to the plane $2 x+4 y-z=2$. Also find the image of point P in the plane.
50. Find the coordinates of the foot of perpendicular and the length of the perpendicular drawn from the point $P(5,4,2)$ to the line $\vec{r}=(-i+3 j+k)+\lambda(2 i+3 j-k)$. Also find the image of P in this line.
51. If a line makes angles $90^{\circ}, 60^{\circ}$ and θ with x, y and z axes respectively, where θ is acute, then find θ.
52. The equations of a line are $5 x-3=15 y+7=3-10 z$. Write the direction cosines of the line.
53. Find the sum of the intercepts cut off by the plane $2 x+y-z=5$, on the coordinate axes.
54. Find the distance between the point ($-1,-5,-10$) and the point of intersection of the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$ and the plane $x-y+z=5$.
55. Find the equation of a line passing through the point $(1,2,4)$ and perpendicular to two lines

$$
\vec{r}=(8 \dot{i}-19 \vec{j}+10 \vec{k})+\lambda(3 i-16 j+7 k) \text { and } \vec{r}=(15 i+29 j+5 k)+\mu(3 i+8 j-5 k)
$$

